Preliminary results of the helicity asymmetry E for η photoproduction on the proton

Brian Morrison* and the CLAS Collaboration

Arizona State University

*Work at Arizona State University supported by the U.S. National Science Foundation

Motivation for η photoproduction experiments

- η is an isospin zero meson, which limits possible resonance couplings to N^* s effectively working as an isospin filter.
- η is one of the lightest non-strange pseudoscalar mesons.
- Very little current data available on double polarization observables.
- Predictions for observables for incident photon energies at and above threshold are available from different theoretical approaches, for example:
 - Effective Lagrangian theories (e.g. Nakayama and Haberzettl)
 - Partial wave analysis (e.g. SAID and Bonn-Gatchina)
 - Isobar analysis (e.g. eta-MAID)

Polarization observables

Photon		Target				Recoil			Target + Recoil			
	_	_	_	_	x'	y'	z'	x'	x'	z'	z'	
	_	x	y	z	_	_	_	x	z	x	z	
unpolarized	σ_0	0	T	0	0	P	0	$T_{x'}$	$-\mathbf{L}_{x'}$	$T_{z'}$	$L_{z'}$	
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(-\mathbf{L}_{z'})$	$(\mathbf{T}_{z'})$	$(\text{-L}_{x'})$	$(-T_{x'})$	
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0	

Observables possible with beam-target polarization experiments Observable of interest in this talk

Polarization observable E:

$$E = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}}$$

By convention we take 1/2 state minus the 3/2 state

Helicity asymmetry E

Raw asymmetry equation in terms of yield (N):

$$R = \frac{N_{1/2} - N_{3/2}}{N_{1/2} + N_{3/2}}$$

Equation for the observable *E* accounting for polarizations:

$$x = E_{\gamma} / E_{e}$$

$$P_{\text{photon}} = P_{\text{electron}} \cdot \frac{4x - x^{2}}{4 - 4x + 3x^{4}}$$

$$P_{\circ} = P_{\text{target}} \cdot P_{\text{photon}}$$

$$E = \frac{1}{P_{\circ} \cdot f_{\text{(Dilution)}}} \cdot \frac{N_{\frac{1}{2}} - N_{\frac{3}{2}}}{N_{\frac{1}{2}} + N_{\frac{3}{2}}}$$

Constraints on E

- $S_{11}(1535)$ dominates η photoproduction at threshold energies (W = 1500-1550 MeV)
 - Since the $S_{11}(1535)$ is a spin = $\frac{1}{2}$, L = 0 resonance, the resonance can only couple to a helicity $\frac{1}{2}$ initial states.
- This dominance forces $E \approx 1$ at and near threshold for all scattering angles.
- This constraint of $E \approx 1$ provides an analysis check near threshold.
- For all energies, *E* must have a value of 1 at 0 and 180° due to conservation laws.

Running conditions

- The data for this analysis was collected during the g9a running period of FroST using the CLAS detector at the Thomas Jefferson National Laboratory.
- Target:
 - Longitudinal polarized target
 - Average target polarization:
 - $\sim 82\%$ (+Pol) and 90% (-Pol)
- Photon beam:
 - Circularly and linearly polarized photon beam
 - 0.5 4.5GeV
 - Electron beam polarization $\sim 85\%$
- Trigger:
 - At least one charged particle in CLAS
- 10.5 billion events taken

FroST (Frozen Spin Target)

Particle identification

•Particle identification used GPID.

•GPID compares measured velocity to known particles given the measured momentum.

- A cut of $|\beta_{\rm measured}$ - $\beta_{\rm calculated}|$ <= .08 was enforced for pions

Vertex resolution

Z position (cm)

Butanol Composition: C_4H_9OH + liquid He

DNA STATI VERSITY

Potential topologies: $\gamma + p \rightarrow p + X$ (full CLAS acceptance)

Potential topologies: $\gamma + p \rightarrow p + \pi^{+/-} + X$

Potential topologies: $\gamma + p \rightarrow p + \pi^+ + \pi^- + \pi^0$

Potential topologies: $\gamma + p \rightarrow p + X$ (photon detected)

Fits for $\gamma + p \rightarrow p + X$ (no charged particles other than the proton detected)

E at threshold

E for $\eta: \gamma + p \rightarrow p + X$ (*n.c.*)

E for $\eta: \gamma + p \rightarrow p + X$ (*n.c.*)

E for $\eta: \gamma + p \rightarrow p + X$ (*n.c.*)

Observable E for η: W = 1625 MeV ш SAID η -MAID . PRELIMIA 0.5 **Bonn-Gatchina** 0 -0.5 -1 0.2 -0.8 -0.6 -0.4 -0.2 0.4 0.6 0.8 -1 0

UNIVERSITY

Observable E for η: W = 1775 MeV

Observable E for η: W = 1825 MeV ш SAID η -MAID 0.5 **Bonn-Gatchina** 0 RY PRELIMINAR -0.5 -1 -0.2 0.2 -0.8 -0.6 -0.4 0 0.4 0.6 0.8

E for $\eta: \gamma + p \rightarrow p + X$ (*n.c.*)

Observable E for η: W = 1925 MeV Y PRELIMINAR ш SAID η -MAID 0.5 **Bonn-Gatchina** 0 -0.5 -1 -0.2 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 -1 0

E vs WTopology: $\gamma + p \rightarrow p + X$ (n.c.)

UNIVERSITY

Conclusions

- Preliminary measurements for *E* near threshold demonstrate proper behavior. Very preliminary measurements for *E* have been obtained up to 1925 MeV in W.
- Polarization observables from η photoproduction will help constrain theoretical models.
- All other beam-target double polarization observables are accessible through FroST and will be analyzed.

Acknowledgements

Jefferson Lab

- The CLAS colaboration
- The ASU working group:
 - Barry Ritchie
 - Michael Dugger
 - Eugene Pasyuk (now at Jlab)

Polarization systematics

• Beam polarization: < 4%

• Target polarization: < 4%

